Abstract

The dependence of Brillouin frequency shift (BFS) in optical fibers on the residual elastic and inelastic strains induced by different draw tensions during fiber fabrication is investigated experimentally and theoretically. The BFS is linearly proportional to the draw tension with a measured coefficient of -42.0 MHz/100 g, which agrees with the theoretical value of -41.96 MHz/100 g. Theoretical analysis further shows that the elastic strain in fiber core influences predominantly the BFS due to the second-order nonlinearity of Young's modulus while the effect of the inelastic strain in fiber cladding is less than 1.0%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.