Abstract
ABSTRACTThe formation process of the spinel phase by the melt-impregnation method was extensively investigated by the pore volume distribution measurement. Two kinds of the spinel structure compounds Li1+xMn2O4 optimized in this method were examined as a 4V cathode in a lithium nonaqueous cell. The first one has an initial charge capacity of 135-147 mAh/g and an unstable rechargeability with the characteristic two-step process, and another one delivers a slightly lower capacity of 105-120 mAh/g and ideal rechargeability with the quasi-one step process. These compounds preserve a capacity of more than 110 mAh/g for the first 100 cycles. The capacity fading on cycling of the former spinel only occurs at the second charge plateau in the rage of x<0.4 in LixMn2O4, and is due to the unstable two-phase structure for lithium intercalation coexisting in this region. The excellent rechargeability for the later spinel results from a homogeneous reaction occurring over the entire intercalated region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.