Abstract

In Streptomyces rimosus, selection for resistance to the aminoglycoside antibiotic kanamycin triggers the normally silent aminoglycoside 3′-phosphotransferase VIII gene (aphVIII). The expression of APHVIII is accompanied by amplification of the chromosomal DNA fragment containing the aphVIII gene. Earlier, S. rimosus aphVIII gene was isolated and sequenced. Using in vitro labeling and immunoprecipitation with anti-APHVIII antibodies, we have demonstrated that endogenous protein kinases (PKs) in extracts of S. rimosus strain S683 actively phosphorylate two serine residues in the APHVIII molecule. The amount of phosphate incorporated into APHVIII in the presence of Ca2+ is 1.84-fold greater than that without Ca2+. Analysis of ingel autophosphorylation and phosphorylation of the substrate incorporated into the gel matrix has shown that modification of APHVIII is catalyzed by two serine/threonine PKs (74 kDa and 55 kDa). The activity of 55-kDa PK is dependent on Ca2+ and calmodulin. The specific kanamycin phosphotransferase activity of exhaustively phosphorylated APHVIII is 3.72 times higher than that of the unmodified enzyme. It is proposed that the above PKs may be involved in the regulation of kanamycin resistance in S. rimosus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.