Abstract
Using unsupervised machine learning on the trajectories from a nonadiabatic molecular dynamics simulation with time-dependent Kohn-Sham density functional theory, we elucidated the structural parameters with the largest influence on nonradiative recombination of charge carriers in CsPbI3, which forms the basis for solar energy and optoelectronic applications. The I-I-I angles between PbI6 octahedra, followed by the Cs-I distance, have the strongest impact on the bandgap and the nonadiabatic coupling. The importance of the Cs-I distance is unexpected, because Cs does not contribute to electron and hole wave functions. The nonadiabatic coupling is most influenced by static properties, which is also surprising, given its explicit dependence on atomic velocities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.