Abstract
Program analysis and optimization can be speeded up through the use of the dependence flow graph (DFG), a representation of program dependences which generalizes def-use chains and static single assignment (SSA) form. In this paper, we give a simple graph-theoretic description of the DFG and show how the DFG for a program can be constructed in O(EV) time. We then show how forward and backward dataflow analyses can be performed efficiently on the DFG, using constant propagation and elimination of partial redundancies as examples. These analyses can be framed as solutions of dataflow equations in the DFG. Our construction algorithm is of independent interest because it can be used to construct a program's control dependence graph in O(E) time and its SSA representation in O(EV) time, which are improvements over existing algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.