Abstract

Optically reconfigurable gate arrays (ORGAs) have been developed as a type of multi-context field programmable gate array. An ORGA's programmable gate array can be reconfigured at nanosecond-order, with more than 100 reconfiguration contexts. In addition to that beneficial feature, since ORGAs can be reconfigured with invalid configuration data that have been damaged by high-energy charged particles in a radiation-rich space environment, ORGAs are suitable for space applications. The robust capability of ORGAs with an amplitude modulation type holographic memory has already been demonstrated, but an ORGA with a phase-modulation type holographic memory that can achieve more robust capability has never been reported. Therefore, this paper presents a proposal of a new dependable ORGA architecture based on a phase-modulation type of holographic memory. In addition, this paper describes experimental clarification through a demonstration that the dependable ORGA is more robust than conventional ORGAs with an amplitude modulation type holographic memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.