Abstract

Presents a modeling approach based on stochastic Petri nets to estimate the reliability and availability of programs in a distributed computing system environment. In this environment, successful execution of programs is conditioned on the successful access of related files distributed throughout the system. The use of stochastic Petri nets is demonstrated by extending a basic reliability model to account for repair actions when faults occur. To this end, two possible models are discussed: the global repair model, which assumes a centralized repair team that restores the system to its original status when a failure state is reached, and the local repair model, which assumes that repairs are localized to the node where they occur. The former model is useful in evaluating the availability of programs (or the availability of the hardware support) subject to hardware faults that are repaired globally; therefore, the programs of interest can be interrupted. On the other hand, the latter model can be used to evaluate program reliability in the presence of hardware faults subject to repair, without interrupting the normal operation of the system. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.