Abstract

In forensics investigations, it is common to encounter biological mixtures consisting of homogeneous or heterogeneous components from multiple individuals and with different genetic contributions. One promising mixture deconvolution strategy is the DEPArray™ technology, which enables the separation of cell populations before genetic analysis. While technological advances are fundamental, their reliable validation is crucial for successful implementation and use for casework. Thus, this study aimed to 1) systematically validate the DEPArray™ system concerning specificity, sensitivity, repeatability, and contamination occurrences for blood, epithelial, and sperm cells, and 2) evaluate its potential for single-cell analysis in the field of forensic science. Our findings confirmed the effective identification of different cell types and the correct assignment of successfully genotyped single cells to their respective donor(s). Using the NGM Detect™ Amplification Kit, the average profile completeness for diploid cells was approximately 80%, with ∼ 290 RFUs. In contrast, haploid sperm analysis yielded an average completeness of 51% referring to the haploid reference profile, accompanied by mean peak heights of ∼ 176 RFUs. Although certain alleles of heterozygous loci in diploid cells showed strong imbalances, the overall peak balances yielded acceptable values above ≥ 60% with a mean value of 72% ± 0.21, a median of 77%, but with a maximum imbalance of 9% between heterozygous peaks. Locus dropouts were considered stochastic events, exhibiting variations among donors and cell types, with a notable failure incidence observed for TH01. Within the wet-lab experimentation with >500 single cells for the validation, profiling was performed using the consensus approach, where profiles were selected randomly from all data to better mirror real casework results. Nevertheless, complete profiles could be achieved with as few as three diploid cells, while the average success rate increased to 100% when using profiles of 6–10 cells. For sperms, however, a consensus profile with completeness >90% of the autosomal diploid genotype could be attained using ≥15 cells. In addition, the robustness of the consensus approach was evaluated in the absence of the respective reference profile without severe deterioration. Here, increased stutter peaks (≥ 15%) were found as the main artifact in single-cell profiles, while contamination and drop-ins were ascertained as rare events. Lastly, the technique’s potential and limitations are discussed, and practical guidance is provided, particularly valuable for cold cases, multiple perpetrator rapes, and analyses of homogeneous mixed evidence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.