Abstract

Exchangeable and nonexchangeable proton and phosphorus resonances (11.75 T) of [d(GTATATAC)]2 in aqueous solution were assigned by using proton two-dimensional nuclear Overhauser effect (2D NOE) spectra, homonuclear proton double-quantum-filtered COSY (2QF-COSY) spectra, proton spin-lattice relaxation time measurements, and 31P1H heteronuclear shift correlation spectra. Due to the large line widths, it was not possible to directly extract vicinal proton coupling constant values from any spectrum including ECOSY or 2QF-COSY. However, comparison of quantitative 2QF-COSY spectral simulations with experimental spectra enabled elucidation of coupling constants. The scope and limitations of this approach were explored by computation and by use of experimental data. It was found that proton line widths exhibit some variability from one residue to the next as well as from one proton to the next within a residue and the exact line width is critical to accurate evaluation of coupling constants. Experimental 2QF-COSY spectra were not consistent with a rigid deoxyribose conformation for any of the nucleotide residues. A classical two-state model, with rapid jumps between C2'-endo (pseudorotation angle P = 162 degrees) and C3'-endo (P = 9 degrees) conformations, was able to account for the spectral characteristics of terminal residue sugars: 60% C2'-endo and 40% C3'-endo. However, the 2QF-COSY cross-peaks from the -TATATA- core could be simulated only if the classical two-state model was altered such that the dominant conformer had a pseudorotation angle at 144 degrees instead of 162 degrees. In this case, the major conformer amounted to 80-85%. Alternatively, the spectral data were consistent with a three-state model in which C2'-endo and C3'-endo conformations had the largest and smallest populations, respectively, but a third conformer corresponding to C1'-exo (P = 126 degrees) was present, consistent with recent molecular dynamics calculations. This alternative yielded populations of 50% (P = 162 degrees), 35% (P = 126 degrees), and 15% (P = 9 degrees) for the -TATATA- sugars. The spectral results indicate little variation of sugar pucker between T and A. Small differences in cross-peak component intensities and characteristic spectral distortions, however, do suggest some unquantified variation. 31P1H heteronuclear chemical shift correlation spectra manifested alternating chemical shifts and coupling constants suggestive of phosphodiester backbone conformational differences between TA and AT junctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.