Abstract

Tethering nanoparticles (NPs) onto the cell surface is critical to cellular hitchhiking applications, such as targeted NP delivery and enhanced cell therapy. While numerous methods have been developed to achieve NP attachment onto the cell membrane, they often face limitations such as the use of complicated cell surface modifications or low-efficiency NP attachment. The purpose of this work was to explore a DNA-based synthetic ligand-receptor pair for NP attachment to the surface of live cells. Polyvalent ligand mimics were used to functionalize NPs, while the cell membrane was functionalized with DNA-based cell receptor mimics. Base pair-directed polyvalent hybridization allowed the NPs to bind to the cells quickly and efficiently. Notably, the process of attaching NPs to cells did not require sophisticated chemical conjugation on the cell membrane or involve any cytotoxic cationic polymers. Therefore, DNA-based polyvalent ligand-receptor binding is promising to various applications ranging from cell surface engineering to NP delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.