Abstract

The corrosion inhibition effect of deoxyribonucleic acid (DNA) on steel reinforcement in simulated concrete pore solutions was investigated by stereo-microscope and various electrochemical techniques including linear polarization resistance, electrochemical impedance spectroscopy and potentiodynamic polarization, and the chemical composition of the passive film formed on the steel electrode in DNA corrosion inhibitor was investigated using XPS (X-ray Photoelectron Spectroscopy). The results show that the DNA corrosion inhibitor increased the corrosion resistance of the steel electrode significantly, with DNA forming a dense film on the steel surface which could effectively restrict the corrosion attack and provide the reinforcement steel superior corrosion resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.