Abstract

Deoxynivalenol (DON) is a secondary metabolite of Fusarium fungi and belonged to trichothecenes, and it widely presents in various food commodities. Previous studies have highlighted its potent toxicity, adversely affecting the growth, development, and reproductive in both humans and animals. However, the potential impact of DON on porcine oocyte organelles remains elusive. In present study, we delved into the toxic effects of DON on mitochondria, endoplasmic reticulum, Golgi during the porcine oocyte maturation. Our findings revealed that DON exposure significantly impeded granulosa cell diffusion and the expulsion of the first polar body. Additionally, mitochondrial fluorescence intensity and membrane potential underwent notable alterations under DON exposure. Notably, lysosomal fluorescence intensity decreased significantly, suggesting protein degradation and potential autophagy, which was further corroborated by the enhanced fluorescence intensity of LC3. Furthermore, endoplasmic reticulum fluorescence intensity declined, and DON exposure elevated endoplasmic reticulum stress levels, evident from the upregulated expression of GRP78. Concurrently, we observed disruption in the fusiform cortex distribution of the Golgi apparatus, characterized by reduced Golgi apparatus fluorescence intensity and GM130 expression. Collectively, our results indicate that DON exposure profoundly affects the fundamental functions of porcine oocyte organelles during meiosis and maturation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.