Abstract

In the scientific field, there is a progressive awareness about the potential implications of food processing on mycotoxins especially concerning thermal treatments. High temperatures may cause, in fact, transformation or degradation of these compounds. This work is aimed to study the fate of mycotoxins during bakery processing, focusing on deoxynivalenol (DON) and deoxynivalenol-3-glucoside (DON3Glc), along the chain of industrial rusk production. Starting from naturally contaminated bran, we studied how concentrations of DON and DON3Glc are influenced by modifying ingredients and operative conditions. The experiments were performed using statistical Design of Experiment (DoE) schemes to synergistically explore the relationship between mycotoxin reduction and the indicated processing transformation parameters. All samples collected during pilot plant experiments were analyzed with an LC-MS/MS multimycotoxin method. The obtained model shows a good fitting, giving back relevant information in terms of optimization of the industrial production process, in particular suggesting that time and temperature in baking and toasting steps are highly relevant for minimizing mycotoxin level in rusks. A reduction up to 30% for DON and DON3Glc content in the finished product was observed within an acceptable technological range.

Highlights

  • Cereal and derived products are at the base of the human and animal diet [1]

  • The main objective of our approach was to explore the possible impact of process variables on DON concentration, in order to minimize the toxin content

  • The statistical model required 19 single experiments; in each experiment, the DON and DON3Glc levels were measured by LC-MS/MS in the mix flour/bran, before and after fermentation, after baking, and after toasting, as previously explained

Read more

Summary

Introduction

Cereal and derived products are at the base of the human and animal diet [1]. Trichothecene mycotoxins, which frequently occur in cereals as well as in cereal-based products, are secondary metabolites produced mainly by Fusarium ear blight pathogens, such as Fusarium graminearum or F. culmorum. These fungi are widely distributed in the temperate zone worldwide [3]. Deoxynivalenol (DON) is the most frequent Fusarium toxin in wheat in the more temperate regions of the world [4,5], and a wide range of cereal-based foods have been reported to be contaminated by this toxin [6,7]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.