Abstract
Deoxygenation and decomposition of ethers and esters, including anisole, diisopropyl ether (DPE), and ethyl propanoate (EP), was investigated using bifunctional metal–acid catalysis at a gas–solid interface in the presence and absence of hydrogen. The bifunctional catalysts studied comprised Pt, Ru, Ni, and Cu as the metal components and Cs2.5H0.5PW12O40 (CsPW), an acidic Cs salt of Keggin-type heteropoly acid (HPA) H3PW12O40, as the acid component, with the main focus on Pt–CsPW catalyst. It was found that bifunctional metal–acid catalysis in the presence of H2 is more efficient for ether and ester deoxygenation than the corresponding monofunctional metal and acid catalysis and that metal- and acid-catalyzed pathways play different roles in these reactions. With Pt-CsPW, hydrodeoxygenation of anisole, a model for the deoxygenation of lignin, occurred with 100% yield of cyclohexane under very mild conditions (60–100 °C and 1 bar of H2). This catalyst had the highest activity in anisole deoxygenation for a...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.