Abstract

IntroductionAt physiologic concentration in serum, the bile acid sodium deoxycholate (DC) induces survival and migration of breast cancer cells. Here we provide evidence of a novel mechanism by which DC reduces apoptosis that is induced by the sphingolipid ceramide in breast cancer cells.MethodsMurine mammacarcinoma 4T1 cells were used in vitro to determine apoptosis and alteration of sphingolipid metabolism by DC, and in vivo to quantify the effect of DC on metastasis.ResultsWe found that DC increased the number of intestinal metastases generated from 4T1 cell tumors grafted into the fat pad. The metastatic nodes contained slowly dividing cancer cells in immediate vicinity of newly formed blood vessels. These cells were positive for CD44, a marker that has been suggested to be expressed on breast cancer stem cells. In culture, a subpopulation (3 ± 1%) of slowly dividing, CD44+ cells gave rise to rapidly dividing, CD44- cells. DC promoted survival of CD44+ cells, which was concurrent with reduced levels of activated caspase 3 and ceramide, a sphingolipid inducing apoptosis in 4T1 cells. Z-guggulsterone, an antagonist of the farnesoid-X-receptor, obliterated this anti-apoptotic effect, indicating that DC increased cell survival via farnesoid-X-receptor. DC also increased the gene expression of the vascular endothelial growth factor receptor 2 (Flk-1), suggesting that DC enhanced the initial growth of secondary tumors adjacent to blood vessels. The Flk-1 antagonist SU5416 obliterated the reduction of ceramide and apoptosis by DC, indicating that enhanced cell survival is due to Flk-1-induced reduction in ceramide.ConclusionsOur findings show, for the first time, that DC is a natural tumor promoter by elevating Flk-1 and decreasing ceramide-mediated apoptosis of breast cancer progenitor cells. Reducing the level or effect of serum DC and elevating ceramide in breast cancer progenitor cells by treatment with Z-guggulsterone and/or vascular endothelial growth factor receptor 2/Flk-1 antagonists may thus be a promising strategy to reduce breast cancer metastasis.

Highlights

  • At physiologic concentration in serum, the bile acid sodium deoxycholate (DC) induces survival and migration of breast cancer cells

  • The metastatic nodes contained slowly dividing cancer cells in immediate vicinity of newly formed blood vessels. These cells were positive for CD44, a marker that has been suggested to be expressed on breast cancer stem cells

  • DC promoted survival of CD44+ cells, which was concurrent with reduced levels of activated caspase 3 and ceramide, a sphingolipid inducing apoptosis in 4T1 cells

Read more

Summary

Results

We found that DC increased the number of intestinal metastases generated from 4T1 cell tumors grafted into the fat pad. The metastatic nodes contained slowly dividing cancer cells in immediate vicinity of newly formed blood vessels. These cells were positive for CD44, a marker that has been suggested to be expressed on breast cancer stem cells. Z-guggulsterone, an antagonist of the farnesoid-X-receptor, obliterated this anti-apoptotic effect, indicating that DC increased cell survival via farnesoid-Xreceptor. DC increased the gene expression of the vascular endothelial growth factor receptor 2 (Flk-1), suggesting that DC enhanced the initial growth of secondary tumors adjacent to blood vessels. The Flk-1 antagonist SU5416 obliterated the reduction of ceramide and apoptosis by DC, indicating that enhanced cell survival is due to Flk-1-induced reduction in ceramide

Conclusions
Introduction
Materials and methods
Methods
Results and discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.