Abstract

SUMMARY The DEOS Mass Transport release 1 (DMT-1) model has been produced on the basis of intersatellite K-band ranging data acquired by the GRACE satellite mission. The functional model exploited in the data processing can be considered as a variant of the acceleration approach. Each element of the data vector is defined as a linear combination of three successive range measurements and can be interpreted as the line-of-sight projection of a weighted average of intersatellite accelerations. As such, the data vector can be directly linked to parameters of the gravitational field. In this way, a series of unconstrained monthly gravity field solutions is produced, each of which is defined as a set of spherical harmonic coefficients complete to degree 120. At the post-processing stage, the unconstrained solutions are filtered with a statistically optimal Wiener-type filter based on full covariance matrices of noise and signal. As such, the DMT-1 model is free from along-track artefacts, which are typical for many other GRACE gravity models. The accuracy of the DMT-1 model has been analysed in different ways. First, the signals observed in areas with minimal mass variations (Sahara, East Antarctica and the middle of the Pacific Ocean) are analysed and interpreted as an upper bound of the noise in the DMT-1 model. It is concluded that the pointwise errors after filtering are of the order of 2–3 cm in terms of equivalent water heights. For the mean mass variations in an area of 10 6 km 2 , the corresponding error reduces to 1.5–2 cm. Second, a time-series of mass variations in the Marie Byrd Land (Antarctica) has been analysed, where the true signal (mostly caused by postglacial rebound) is expected to be close to a linear trend. The rms of the post-fit residuals is found to be 3.3 cm, which is consistent with the error analysis in areas with minimal mass variations. Thirdly, the DMT-1 model has been applied to estimate mass variations in 2003–2006 in Lake Victoria (Africa), where a large drop of water level is observed in recent years. The obtained linear trend (−31 ± 3c m yr −1 ) is in good agreement with that derived from the satellite altimetry data (−35 ± 1c m yr −1 ).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.