Abstract

G protein-coupled receptors (GPCRs) comprise one of the largest families of transmembrane proteins involved in signal transduction of diverse external stimuli and represent the most successful target class in drug discovery. The availability of genome sequences in the postgenomic era has paved the way for in silico identification of novel GPCR family members based upon sequence similarity. Consequently, newly discovered receptors are by definition orphan GPCRs with no known ligand, and their functional characterization now poses a major challenge. Over the years, advances in understanding of GPCR biology have led to the development of cell-based assay systems that link orphan GPCRs to their activating ligand(s) in high-throughput format (reverse pharmacology). Many of these technologies monitor important steps in the GPCR activation cycle such as the accumulation of secondary messenger molecules (e.g., cAMP, calcium). In this chapter, we present a calcium mobilization assay in mammalian cells to detect changes in intracellular calcium concentration upon receptor activation by the use of a fluorescent probe. This is currently one of the most frequently used assay systems for GPCR deorphanization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.