Abstract

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain EDL933 encodes the single chromosomal 9-O-acetylesterase NanS, and several copies of prophage-encoded 9-O-acetylesterases (NanS-p). These enzymes have recently been shown to cleave 5-N-acetyl-9-O-acetyl neuraminic acid (Neu5,9Ac2) to yield de-O-acetylated Neu5Ac, the latter of which may serve as a carbon and/or nitrogen source.In the current study, we investigated the NanS- and NanS-p-mediated digestion of synthetic O-acetylated neuraminic acids and bovine submaxillary glands mucin (BSM)-derived O-acetylneuraminic acids by high-performance thin-layer chromatography (HPTLC) and nano electrospray ionization mass spectrometry (nanoESI MS). Initial HPTLC analyses showed the expected activity of NanS and NanS-p variants for Neu5,9Ac2. However, all tested enzymes were unable to de-O-acetylate 5-N-acetyl-4-O-acetylneuraminic acid (Neu5,4 Ac2) in our test system. The nanoESI MS analysis of neuraminic acids after treatment of BSM with NanS-p gave evidence that NanS-p variants of EHEC O157:H7 strain EDL933 cleave off O-acetyl groups from mono-, di-, and tri-O-acetylated Neu5Ac and N-glycolylneuraminic acid (Neu5Gc), regardless of the carbon positions C7, C8 or C9 of the acetate esters. This enzyme activity leads to neuraminidase-accessible Neu5Ac and Neu5Gc on mucin glycans.Moreover, we could demonstrate by HPTLC analyses that recombinant Bacteroides thetaiotaomicron sialidase (BTSA-His) was able to cleave Neu5Ac and Neu5,9Ac2 from BSM and that the combination of BTSA-His with both NanS-His and NanS-p-His derivatives enhanced the release of de-O-acetylated core Neu5Ac and Neu5Gc from mammalian mucin O-glycans.Growth experiments with EHEC wildtype strain EDL933, its nanS and nanS/nanS-p1a-p7 mutant and exogenous BTSA-His in BSM demonstrated that the presence of BTSA-His enhanced growth of EDL933 and the nanS deletion mutant but not the nanS/nanS-p1a-p7 mutant.Thus, we hypothesize that the expression of sialic acid O-acetylesterases with a broad specificity could be an advantage in competition with the gut microbiota for nutrients and facilitate EHEC colonization in the human large intestine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.