Abstract

ObjectivesThis study aimed to evaluate the effect of microwave sintering temperature and cooling rate (MS) on 3Y-TZP ceramics and its influence on the ceramic microstructure and mechanical properties. Specifically, to optimize the sintering process, reducing the total sintering time compared to conventional sintering. Materials and methodsEighty-four pre-sintered Y-TZP discs (Vipi block Zirconn, VIPI) (ISO 6872) were divided into seven groups (n = 12) according to the sintering conditions: conventional sintering (CS) at 1530 °C for 120 min and microwave sintering at 1400 °C (MS1400) and 1450 °C (MS1450) for 15 min followed by different cooling conditions: rapid cooling (RC), cooling at 400 °C (C400) and 25 °C (C25). The specimens were submitted to apparent density measurements, X-ray diffraction analysis (XRD), scanning electron microscopy, and biaxial flexural strength test. Data was statistically analyzed through two-way ANOVA, Tukey, Sidak, Dunnett and Weibull (α = 0.05). ResultsAll MS1400 groups presented lower density values than the CS and MS1450 groups. Two-way ANOVA revealed that the MS temperature and cooling rate affected the biaxial flexural strength of the Y-TZP (p < 0.01). Group MS1400RC presented lower biaxial flexural strength values (681.9 MPa) than MS1450RC (824.7 MPa). The cooling rate did not statistically decrease the biaxial strength among the groups submitted to microwave sintering at 1450 °C. XRD analysis showed that the sintering and cooling temperature did not induce tetragonal to monoclinic phase transformation. ConclusionsMicrowave sintering at 1450 °C for 15 min followed by rapid cooling can be a viable fast alternative protocol for Y-TZP sintering, compared with the conventional sintering, reducing the total sintering time by 75% and reducing the energy used for the sintering process without affecting the Y-TZP biaxial flexural strength and relative density compared to the conventional sintering. Moreover, the microwave technique promoted smaller grains and did not induce monoclinic phase formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.