Abstract

ABSTRACTFew studies have focused on the bacterial species associated with the deterioration of the dental and gingival health of children with congenital heart defects (CHD). The aims of this study were (1) to examine the dental plaque of children with CHD in order to quantify bacterial load and altered bacterial composition compared with children without CHD; and (2) to investigate the correlation between the level of caries and gingivitis and dental biofilm bacteria among those children. In this cross-sectional study, participants were children (3–12 years) recruited in Khartoum State, Sudan. A total of 80 CHD cases from the Ahmed Gasim Cardiac Centre and 80 healthy controls from randomly selected schools and kindergartens were included. Participants underwent clinical oral examinations for caries (decayed, missing, and filled teeth indices [DMFT] for primary dentition, and DMFT for permanent dentition), and gingivitis (simplified gingival index [GI]). Pooled dental biofilm samples were obtained from four posterior teeth using paper points. Real-time quantitative polymerase chain reaction was used for the detection and quantification of Streptococcus mutans, Streptococcussanguinis, and Lactobacillus acidophilus. Checkerboard DNA–DNA hybridization was used for the detection of 40 additional bacterial species. CHD cases had a significantly higher caries experience (DMFT = 4.1 vs. 2.3, p < 0.05; DMFT = 1.4 vs. 0.7, p < 0.05) and a higher mean number of examined teeth with gingivitis (4.2 vs. 2.0; p < 0.05) compared with controls. S. mutans counts were significantly higher among the CHD cases (p < 0.05). Checkerboard results revealed that 18/40 bacterial species exhibited significantly higher mean counts among CHD cases (p < 0.01). Correlation analyses revealed that among CHD cases, the detection levels of Tannerella forsythia, Campylobacter rectus, Fusobacterium nucleatum subsp. vincentii, F. nucleatum subsp. nucleatum, and F. nucleatum subsp. polymorphum were highly positively correlated with GI. CHD cases harbor more cariogenic and periodontopathogenic bacterial species in their dental plaque, which correlated with higher levels of caries and gingivitis.

Highlights

  • The human mouth is colonized by a variety of microorganisms, including bacteria, fungi, and viruses

  • The results reveal that 18 bacterial species were more frequently detected, with significantly higher mean counts in Congenital heart defects (CHD) cases compared with controls, including Porphyromonas gingivalis of the red complex and seven species of the orange complex (p < 0.01; Figure S1)

  • The data reveal that caries and gingivitis were both significantly more prevalent in the CHD cases compared with controls with the same age, sex, and history of antibiotic use

Read more

Summary

Introduction

The human mouth is colonized by a variety of microorganisms, including bacteria, fungi, and viruses. Recent studies suggest that dental and periodontal diseases are caused by shifts in the relative composition of the commensal bacteria, leading to elevated levels of pathogenic bacteria within the plaque microbiota [9,10] These changes are brought about by factors related to altered local host immune responses such as chronic inflammation, unfavorable host genetic predisposition, and the presence of other environmental alterations that favor overgrowth and shift of endogenous species [11]. Congenital heart defects (CHD) are associated with impaired oral health status, and children with CHD have well-documented experiences of higher caries, more severe gingivitis, and increased plaque accumulation compared with children without CHD [14,15]. HACEK microbes have been shown to cause infective endocarditis in children with CHD, along with viridans streptococci and Staphylococcus ssp [24]

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.