Abstract
This study aimed to explore the effects of drilling rotational speed and feed-rate on the stability of dental implants through in-vivo and ex-vivo experiments. To this end, a total of 16 identical dental implants were inserted in the mandible of four dogs. The osteotomies were made with two drilling rotational speeds, i.e., 800 and 1500 rpm, and two different feed-rates, i.e., 1 and 2 mm/s. Implant stability quotients (ISQs) were recorded immediately after inserting implants and then each week for four subsequent weeks. Then, all animals were euthanized, and a bone sample containing the implants was extracted from each hemi-mandible for the pull-out test. A two-way ANOVA was performed for ISQs, and pull-out strengths (PoS), and the significance level was set to <0.05. The effect of rotational speed and feed-rate, used in this study, on the primary stability quotients was not significant (P > 0.05). Increasing the rotational speed from 800 to 1500 rpm significantly increased both ISQ and PoS values at the end of the 4th week after the implantation (P = 0.022 and P = 0.001, respectively). Moreover, by decreasing the feed-rate from 2 to 1 mm/s, a significant increase in PoSs of the dental implants was observed four weeks after the implantation (P = 0.019). Results of this study showed that either by increasing drilling rotational speed, here from 800 to 1500 rpm, or by reducing feed-rate, here from 2 to 1 mm/s, the secondary stability would be reinforced. Further investigations are needed to see if and how the conclusions made in this study can be generalized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.