Abstract

Hydroxyapatite crystals from developing rat incisor enamel and polished sections of mature human dental enamel were investigated using Atomic and Chemical Force Microscopy. Regular substructures were seen on crystals comprising ∼40 nm wide morphologically and chemically defined bands across the crystal long axes. Exposure to low pH resulted in selective dissolution between bands and the emergence of 2–3 spherical structures within each band. The spherical structures were chemically distinct exhibiting high friction in lateral force mode. Enamel crystals appear to comprise stacks of roughly hexagonal arrays of chemically or structurally distinct spherical subunits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.