Abstract

The Density Matrix Renormalization Group (DMRG) method with periodic boundary conditions is introduced for two dimensional classical spin models. It is shown that this method is more suitable for derivation of the properties of infinite 2D systems than the DMRG with open boundary conditions despite the latter describes much better strips of finite width. For calculation at criticality, phenomenological renormalization at finite strips is used together with a criterion for optimum strip width for a given order of approximation. For this width the critical temperature of 2D Ising model is estimated with seven-digit accuracy for not too large order of approximation. Similar precision is reached for critical indices. These results exceed the accuracy of similar calculations for DMRG with open boundary conditions by several orders of magnitude.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call