Abstract

We construct and apply an exchange-correlation functional for the one-dimensional Hubbard model. This functional has built into it the Luttin-ger-liquid and Mott-insulator correlations, present in the Hubbard model, in the same way in which the usual ab initio local-density approximation (LDA) has built into it the Fermi-liquid correlations present in the electron gas. An accurate expression for the exchange-correlation energy of the homogeneous Hubbard model, based on the Bethe Ansatz (BA), is given and the resulting LDA functional is applied to a variety of inhomo-geneous Hubbard models. These include finite-size Hubbard chains and rings, various types of impurities in the Hubbard model, spin-density waves, and Mott insulators. For small systems, for which numerically exact diagonalization is feasible, we compare the results obtained from our BA-LDA with the exact ones, finding very satisfactory agreement. In the opposite limit, large and complex systems, the BA-LDA allows to investigate systems and parameter regimes that are inaccessible by traditional methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.