Abstract
Gradient-corrected and hybrid variants of density-functional theory are used to compute the geometries and 99Ru chemical shifts of RuO4, [RuCp2], [K4Ru(CN)6], [Ru3(CO)12], [Ru(CO)3X3]- (X=Cl, I), [Ru(CO)2Cl4]2-, [Ru(bipy)3]2+, and [Ru(CO)2(iPr-DAB)(X)(Y)] [XY= Cl2, I2, MeCl, MeI, or (SnMe3)2]. For this set of compounds, substituent effects on delta(99Ru) are somewhat underestimated with the BPW91 pure density functional but are described well by the B3LYP hybrid functional, which can also be used to reproduce empirical trends in electric field gradients (EFGs) at the Ru nucleus qualitatively. In the [Ru(CO)2(iPr-DAB)XY] series, trends in the computed EFGs parallel those in the observed 99Ru NMR linewidths, in accordance with the quadrupolar relaxation mechanism expected for this nucleus. For this series of compounds, the use of X-ray-derived geometries affords a worse correlation between calculated EFGs and experimental linewidths than does the use of optimized geometries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.