Abstract

Amorphous topological states, which are independent of the specific spatial distribution of microscopic constructions, have gained much attention. Recently, higher-order topological insulators, which are a new class of topological phases of matter, have been proposed in amorphous systems. Here, we propose a density-driven higher-order topological phase transition in a two-dimensional amorphous system. We demonstrate that the amorphous system hosts a topological trivial phase at low density. With an increase in the density of lattice sites, the topological trivial phase converts to a higher-order topological phase characterized by a quantized quadrupole moment and the existence of topological corner states. Furthermore, we confirm that the density-driven higher-order topological phase transition is size dependent. In addition, our results should be general and equally applicable to three-dimensional amorphous systems. Our findings may greatly enrich the study of higher-order topological states in amorphous systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.