Abstract

Natal dispersal enables population connectivity, gene flow and metapopulation dynamics. In polygynous mammals, dispersal is typically male-biased. Classically, the ‘mate competition’, ‘resource competition’ and ‘resident fitness’ hypotheses predict density-dependent dispersal patterns, while the ‘inbreeding avoidance’ hypothesis posits density-independent dispersal. In a leopard (Panthera pardus) population recovering from over-harvest, we investigated the effect of sex, population density and prey biomass, on age of natal dispersal, distance dispersed, probability of emigration and dispersal success. Over an 11-year period, we tracked 35 subadult leopards using VHF and GPS telemetry. Subadult leopards initiated dispersal at 13.6 ± 0.4 months. Age at commencement of dispersal was positively density-dependent. Although males (11.0 ± 2.5 km) generally dispersed further than females (2.7 ± 0.4 km), some males exhibited opportunistic philopatry when the population was below capacity. All 13 females were philopatric, while 12 of 22 males emigrated. Male dispersal distance and emigration probability followed a quadratic relationship with population density, whereas female dispersal distance was inversely density-dependent. Eight of 12 known-fate females and 5 of 12 known-fate male leopards were successful in settling. Dispersal success did not vary with population density, prey biomass, and for males, neither between dispersal strategies (philopatry vs. emigration). Females formed matrilineal kin clusters, supporting the resident fitness hypothesis. Conversely, mate competition appeared the main driver for male leopard dispersal. We demonstrate that dispersal patterns changed over time, i.e. as the leopard population density increased. We conclude that conservation interventions that facilitated local demographic recovery in the study area also restored dispersal patterns disrupted by unsustainable harvesting, and that this indirectly improved connectivity among leopard populations over a larger landscape.

Highlights

  • In fragmented, human-dominated landscapes, most animal populations persist as sets of geographically discrete populations isolated in a highly altered matrix [1]

  • We demonstrate that dispersal patterns changed over time, i.e. as the leopard population density increased

  • While males could display opportunistic philopatry in an unstable population, mate competition was likely the main driver of male dispersal, with both the rate of male emigration and the distance they dispersed increasing as the population saturated

Read more

Summary

Introduction

Human-dominated landscapes, most animal populations persist as sets of geographically discrete populations isolated in a highly altered matrix [1]. In this context, natal dispersal, the permanent emigration from the natal range to an area where an individual settles and breeds [2], is essential to maintain demographic and genetic flow among population patches [3]. Human-mediated harvest can elevate the rate of territorial turn-over and provide opportunities for subadults to settle locally, disrupting natal dispersal patterns [7] Such decreased rate of emigration can turn source populations into sinks [7], or lead to increased inbreeding within the local population [8], affecting the dynamics and persistence of the larger population. Understanding the impacts of anthropogenic disturbance on dispersal patterns is critical to effectively managing harvested populations

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call