Abstract

The deformed relativistic Hartree-Bogoliubov theory in continuum with the density-dependent meson-nucleon couplings is developed. The formulism is briefly presented with the emphasis on handling the density-dependent couplings, meson fields, and potentials in axially deformed system with partial wave method. Taking the neutron-rich nucleus $^{38}$Mg as an example, the newly developed code is verified by the spherical relativistic continuum Hartree-Bogoliubov calculations, where only the spherical components of the densities are considered. When the deformation is included self-consistently, it is shown that the spherical components of density-dependent coupling strengths are dominant, while the contributions from low-order deformed components are not negligible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call