Abstract

Motivated by recent research achievement of quantum interacting systems in non-equilibrium, we consider a Luttinger model with a suddenly switched-on interaction proposed by Cazalilla [M.A. Cazalilla, Phys. Rev. Lett. 97 (2006) 156403]. In order to compare with real systems, we extend Cazalilla's scenario to the spinful system. To find the influence of initial states on the time evolution of some non-equilibrium systems, we mainly focus on the density-density propagator. By comparison and analysis, we discover the different behavior of this non-equilibrium system. Further, it is found that the propagator saves strong memory of initial state, and the effects of right-left interaction cancel out in total density-density propagator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.