Abstract

Recently, graph mining approaches have become very popular, especially in certain domains such as bioinformatics, chemoinformatics and social networks. One of the most challenging tasks is frequent subgraph discovery. This task has been highly motivated by the tremendously increasing size of existing graph databases. Due to this fact, there is an urgent need of efficient and scaling approaches for frequent subgraph discovery. In this paper, we propose a novel approach for large-scale subgraph mining by means of a density-based partitioning technique, using the MapReduce framework. Our partitioning aims to balance computational load on a collection of machines. We experimentally show that our approach decreases significantly the execution time and scales the subgraph discovery process to large graph databases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.