Abstract

Experimental data of density, absolute viscosity, and electric conductivity for the K2SO4 + H2O + 1-propanol system have been determined at (303.15, 308.15, 313.15, and 318.15) K. Different mass fractions of alcohol/water (free salt) were studied in the range from 0 to 0.55. For these mass fractions of 1-propanol/water, the range of variation of potassium sulfate was from (0.0168 to 0.698) mol·kg−1. The Williams, Landel, and Ferry equation was used to fit the absolute viscosity and equivalent conductance (determined from electric conductivity) data, and mean absolute deviations of 0.017 mPa·s and 0.19 (cm2·equiv Ω−1) were obtained, respectively. The glass-transition temperature was estimated with the experimental data of viscosity and equivalent conductance. Because the values obtained are relatively similar, we conclude that both transport properties are governed by the same molecular movement. Knowledge of the evaluated properties is useful in the study of the drowning-out crystallization process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.