Abstract

PET quantitation depends on the accuracy of the CT-derived attenuation correction map. In the lung, respiration leads to both positional and density mismatches, causing PET quantitation errors at lung borders but also within the whole lung. The aim of this work is to determine the extent of the associated errors on the measured time activity curves (TACs) and the corresponding kinetic parameter estimates. 5 patients with idiopathic pulmonary fibrosis underwent dynamic 18F-FDG PET and cine-CT imaging as part of an ongoing study. The cine-CT was amplitude gated using PCA techniques to produce end expiration (EXP), end inspiration (INS) and mid-breathing cycle (MID) gates representative of a short clinical CT acquisition. The ungated PET data were reconstructed with each CT gate and the TACs and kinetic parameters compared. Patient representative XCAT simulations with varying lung density, both with and without motion, were also produced to represent the above study allowing comparison of true to measured results. In all cases, the obtained PET TACs differed with each CT gate. For ROIs internal to the lung, the effect was dominated by changes in density, as opposed to motion. The errors in the TACs varied with time, providing evidence that errors due to attenuation mismatch depend on activity distribution. In the simulations, some kinetic parameters were over- and under-estimated by a factor of 2 in the INS and EXP gates respectively. For the patients, the maximum variation in kinetic parameters was 20%. Our results show that whole lung density changes during the respiratory cycle have a significant impact on PET quantitation. This is especially true of the kinetic parameter estimates as the extent of the error is dependent on tracer distribution which varies with time. It is therefore vital to use matched PET/CT for attenuation correction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.