Abstract

Meat extract is a product with a high aggregated value obtained by concentrating cooking broth from meat products. To optimize project design and processing, we determined experimental values of the density and rheological behaviour of meat extract. We evaluated the influences of temperature and solids concentration on the studied parameters. Different concentrations and temperatures were selected based on the main processing steps, ranging from 0–60 gsoluble solids/100 gsolution and 2–98 °C. The model best fitted to density was derived and a thermodynamic relation was applied to calculate the thermal expansion coefficient. Meat extract density had a linear dependence on temperature and quadratic dependence on solids content, while the thermal expansion coefficient remained approximately constant at 5.33 × 10−4 m3 · m−3 · K−1. Concerning rheological analyses, meat extract had Newtonian behaviour from 1.5–20 gsoluble solids/100 gsolution at the temperature range studied. From 30–60 gsoluble solids/100 gsolution, the Power‐Law model was better fitted to the data and the consistency coefficient and flow behaviour index could be calculated. Both parameters were sensitive to changes in temperature and concentration. Apparent viscosity increased with increasing the meat extract concentration and lowering the temperature. The dependence of rheological parameters on temperature was expressed through an Arrhenius‐type equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.