Abstract

BackgroundDensity related effects, both inverse density- and density-dependent, contribute to regulating population dynamics of parasites. We investigated whether density related effects are directly controlling lifetime fecundity of Heterakis gallinarum.MethodsDaily total numbers of H. gallinarum eggs in faeces samples (N = 1365) from chickens (N = 39) were quantified starting from 3 weeks (wk) post-infection (p.i.). The birds were necropsied 8 wk p.i., and intensity and demographic characteristics of infrapopulations were determined. Density related effects on cumulative egg excretion (CEE), lifetime fecundity and worm length were investigated with a segmented regression analysis.ResultsFor CEE, lifetime fecundity and female worm length, we determined highly similar parasite intensity thresholds (52–54 worms), which separated infrapopulations for influences of inverse density- and density dependence. CEE increased as parasite intensity increased up to an intensity of 52 worms. After this threshold, the relationship followed more of a horizontal line indicating impaired worm fecundity at higher parasite intensities. Lifetime fecundity was enhanced linearly in infrapopulations with up to 54 worms, but thereafter decreased gradually with increasing infrapopulation size. Female worm length increased linearly with elevating parasite intensity up to a threshold of 54 worms and thereafter declined with a rate of -0.014 mm for each additional worm. Lifetime fecundity and female worm length did not significantly differ between infrapopulations below and above the thresholds (P > 0.05). Lifetime fecundity was positively associated with the percentage of male worms (r = 0.44; P < 0.001), but negatively with absolute deviation from the theoretically expected sex-ratio in the infrapopulations (r = -0.56; P = 0.005). These relationships were stronger in infrapopulations below the threshold (r = 0.51 and -0.61, respectively), and were not significantly different from zero in the infrapopulations above the threshold (P > 0.05).ConclusionsEgg production of H. gallinarum is regulated by the effects of both inverse density- and density-dependent mechanisms, which result in similar average lifetime fecundity below or above intensity thresholds. In infrapopulations below the intensity thresholds, inverse density dependence effects on lifetime fecundity appear to result partly from sex-ratio fluctuations and impaired mating success of the nematode.

Highlights

  • Density related effects, both inverse density- and density-dependent, contribute to regulating population dynamics of parasites

  • As the outcome of single faecal egg counts can suffer from methodological restrictions to some extent, we investigated density-related effects on long-term egg production outcomes including cumulative egg excretion of infrapopulations and lifetime fecundity of the nematode

  • Average cumulative egg excretion per infrapopulation was roughly half a million eggs, which corresponded to an overall average of 416 eggs (SD =109) per female worm and day (Table 1)

Read more

Summary

Introduction

Both inverse density- and density-dependent, contribute to regulating population dynamics of parasites. The most pronounced density-dependent effects are mainly observed on establishment rate [5,6,7], worm length [2,8], fecundity [9,10] and sex-ratio [11]. Permin et al [5] observed that increasing infection doses of Ascaridia galli eggs resulted in almost the same number of worms per chicken, indicating a clear density-dependent effect on the establishment rate of the nematode. Thompkins and Hudson [8] considered the length of female H. gallinarum as a reliable indicator of fecundity, due to a high correlation with number of in utero embryonated eggs, inverse-density and/or density dependent effects have not so far been shown directly on worm fecundity. As the outcome of single faecal egg counts can suffer from methodological restrictions to some extent, we investigated density-related effects on long-term egg production outcomes including cumulative egg excretion of infrapopulations and lifetime fecundity of the nematode

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call