Abstract

The density and refractive index were experimentally determined for binary mixtures of water + ionic liquid 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate throughout the ionic liquid mass fraction range, at atmospheric pressure and various temperatures between 293.15 K and 323.15 K. The refractive index was measured at five wavelengths between 589.2 nm and 935 nm. From the experimental data on density, volumetric properties such as the excess molar volume and thermal expansion coefficient were calculated. The excess molar volume was negative throughout the ionic liquid mass fraction range and its magnitude decreased with temperature. From the experimental data on the refractive index, the deviation in the refractive index and its coefficients of concentration, temperature and chromatic dispersion were obtained. The values of the deviation in the refractive index were positive and decreased with temperature. In order to simultaneously investigate the dependence of the refractive index on concentration, temperature and wavelength, we correlated the experimental data with a two-term Cauchy equation. Furthermore, a comparative study of 11 refractive index mixing rules was performed to assess their prediction ability. More advanced mixing rules do not lead to any improvement in comparison with the simple linear mixing rule (Arago-Biot) for estimating refractive index and the concentration contrast factor of the mixture studied. The results are expected to be useful for tuning the properties of an ionic liquid by adding water or selecting the temperature or optical region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.