Abstract

We investigate cosmological density perturbations in a covariant and gauge-invariant formalism, incorporating relativistic causal thermodynamics to give a self-consistent description. The gradient of density inhomogeneities splits covariantly into a scalar part, equivalent to the usual density perturbations, a rotational vector part that is determined by the vorticity, and a tensor part that describes the shape. We give the evolution equations for these parts in the general dissipative case. Causal thermodynamics gives evolution equations for viscous stress and heat flux, which are coupled to the density perturbation equation and to the entropy and temperature perturbation equations. We give the full coupled system in the general dissipative case, and simplify the system in certain cases. A companion paper uses the general formalism to analyze damping of density perturbations before last scattering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.