Abstract
Density peaks clustering (DPC) algorithm regards the density peaks as the potential cluster centers, and assigns the non-center point into the cluster of its nearest higher-density neighbor. Although DPC can discover clusters with arbitrary shapes, it has some limitations. On the one hand, the density measure of DPC fails to eliminate the density difference among different clusters, which affects the accuracy of recognizing cluster center. On the other hand, the nearest higher-density point is determined without considering connectivity, which leads to continuously clustering errors. Therefore, DPC fails to obtain satisfactory clustering results on datasets with great density difference among clusters. In order to eliminate these limitations, a novel DPC algorithm based on balance density and connectivity (BC-DPC) is proposed. First, the balance density is proposed to eliminate the density difference among different clusters to accurately recognize cluster centers. Second, the connectivity between a data point and its nearest higher-density point is guaranteed by mutual nearest neighbor relationship to avoid continuously clustering errors. Finally, a fast search strategy is proposed to find the nearest higher-density point. The experimental results on synthetic, UCI, and image datasets demonstrate the efficiency and effectiveness of the proposed algorithm in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.