Abstract

Quite general, analytical (both exact and approximate) forms for discrete probability distributions (PDs) that maximize Tsallis entropy for a fixed variance are here investigated. They apply, for instance, in a wide variety of scenarios in which the system is characterized by a series of discrete eigenstates of the Hamiltonian. Using these discrete PDs as “weights” leads to density operators of a rather general character. The present study allows one to vividly exhibit the effects of non-extensivity. Varying Tsallis’ non-extensivity index q one is seen to pass from unstable to stable systems and even to unphysical situations of infinite energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.