Abstract
AbstractElectron spin resonance (ESR) spectroscopy is an important tool to characterize the ground state of conduction electrons and to measure their spin‐relaxation times. Observing ESR of the itinerant electrons is thus of great importance in graphene and in single‐wall carbon nanotubes. Often, the identification of CESR signal is based on two facts: the apparent asymmetry of the ESR signal (known as a Dysonian lineshape) and on the temperature independence of the ESR signal intensity. We argue that these are insufficient as benchmarks and instead the ESR signal intensity (when calibrated against an intensity reference) yields an accurate characterization. We detail the method to obtain the density of states from an ESR signal, which can be compared with theoretical estimates. We demonstrate the success of the method for K doped graphite powder. We give a benchmark for the observation of ESR in graphene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.