Abstract
We study an extended Kitaev-Heisenberg model including additional anisotropic couplings by using two-dimensional density-matrix renormalization group method. Calculating the gound-state energy, entanglement entropy, and spin-spin correlation functions, we make a phase diagram of the extended Kitaev-Heisenberg model around spin-liquid phase. We find a zigzag antiferromagnetic phase, a ferromagnetic phase, a 120-degree antiferromagnetic phase, and two kinds of incommensurate phases around the Kitaev spin-liquid phase. Furthermore, we study the entanglement spectrum of the model and find that entanglement levels in the Kitaev spin-liquid phase are degenerate forming pairs but those in the magnetically ordered phases are non-degenerate. The Schmidt gap defined as the energy difference between the lowest two levels changes at the phase boundary adjacent to the Kitaev spin-liquid phase. However, we find that phase boundaries between magnetically ordered phases do not necessarily agree with the change of the Schmidt gap.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.