Abstract

AbstractThe frequency‐resolved secondary emission from excitons in a single 8 nm‐wide quantum well is investigated using speckle analysis. We model these experiments starting with a Hamiltonian in the basis of disorder eigenstates of excitons, interacting both with light and acoustical phonons. The distinction between incoherent and coherent secondary emission is intimately related with the decomposition of a two‐time exciton density‐matrix into a diagonal, incoherent part and a product of polarizations. The latter gives rise to speckling (intensity variations over observation angle), and is called resonant Rayleigh scattering. The results of our simulation agree pretty well with the experimental data and allow a determination of the coherent and incoherent exciton distributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.