Abstract

When forming composite microcapsules through the emulsification of a dispersed phase laden with microparticles, one will find that the microparticles become irreversibly embedded in the resulting microcapsule membrane. This phenomenon, known as Pickering stabilization, is detrimental when the end function of the microcapsules relies on the mobility of encapsulated microparticles within the capsule core. In this work, a robust microencapsulation route using density matching of non-Brownian microparticles in a binary solvent is shown to easily and effectively encapsulate particles, with >90% of particles retaining mobility within the microcapsules, without the necessity for prior chemical/physical modifications to the microparticles. This is proposed as a generalized method to be used for all manner of particle chemistries, shapes, and sizes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.