Abstract
Inverse scattering is considered one of the most robust and accurate ultrasonic tomography methods. Most inverse scattering formulations neglect density changes in order to reconstruct sound speed and acoustic attenuation. Some studies available in literature suggest that density distributions can also be recovered using inverse scattering formulations. Two classes of algorithms have been identified. (1) The separation of sound speed and density contributions from reconstructions using constant density inverse scattering algorithms at multiple frequencies. (2) The inversion of the full wave equation including density changes. In this work, the performance of a representative algorithm for each class has been studied for the reconstruction of circular cylinders: the dual frequency distorted Born iterative method (DF-DBIM) and the T-matrix formulation. Root mean square error values lower than 30% were obtained with both algorithms when reconstructing cylinders up to eight wavelengths in diameter with moderate density changes. However, in order to provide accurate reconstructions the DF-DBIM and T-matrix method required very high signal-to-noise ratios and significantly large bandwidths, respectively. These limitations are discussed in the context of practical experimental implementations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.