Abstract

Density-functional theory (DFT) and model Hamiltonians are conceptually distinct approaches to the many-particle problem, which can be developed and applied independently. In practice, however, there are multiple connections between the two. This review focuses on these connections. After some background and introductory material on DFT and on model Hamiltonians, we describe four distinct, but complementary, connections between the two approaches: (i) the use of DFT as input for model Hamiltonians, in order to calculate model parameters such as the Hubbard U and the Heisenberg J. (ii) The use of model Hamiltonians as input for DFT, as in the LDA + U functional. (iii) The use of model Hamiltonians as theoretical laboratories to study aspects of DFT. (iv) The use of special formulations of DFT as computational tools for studying spatially inhomogeneous model Hamiltonians. We mostly focus on this fourth combination, model DFT, and illustrate it for the Hubbard model and the Heisenberg model. Other models that have been treated with DFT, such as the PPP model, the Gaudin–Yang δ-gas model, the XXZ chain, variations of the Anderson and Kondo models and Hooke’s atom are also briefly considered. Representative applications of model DFT to electrons in crystal lattices, atoms in optical lattices, entanglement measures, dynamics and transport are described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.