Abstract

Despite the remarkable thermochemical accuracy of Kohn–Sham density-functional theories with gradient corrections for exchange-correlation [see, for example, A. D. Becke, J. Chem. Phys. 96, 2155 (1992)], we believe that further improvements are unlikely unless exact-exchange information is considered. Arguments to support this view are presented, and a semiempirical exchange-correlation functional containing local-spin-density, gradient, and exact-exchange terms is tested on 56 atomization energies, 42 ionization potentials, 8 proton affinities, and 10 total atomic energies of first- and second-row systems. This functional performs significantly better than previous functionals with gradient corrections only, and fits experimental atomization energies with an impressively small average absolute deviation of 2.4 kcal/mol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.