Abstract

Using density functional theory-based first principles calculations, we investigated the changes in the energetics and electronic structures of rhododendrol (RD)-quinone for the initial step of two important reactions, viz., cyclization and thiol binding, to give significant insights into the mechanism of the cause of cytotoxic effects. We found that RD-quinone in the electroneutral structure cannot undergo cyclization, indicating a slow cyclization of RD-quinone at neutral pH. Furthermore, using methane thiolate ion as a model thiol, we found that the oxidized form of the cyclized RD-quinone, namely RD-cyclic quinone, exhibited a reduced binding energy for thiols. However, this reduction of binding energy is clearly smaller than the case of dopaquinone, which is a molecule originally involved in the melanin synthesis. This study clearly shows that RD-quinone has a preference toward thiol bindings than cyclization compared to the case of dopaquinone. Considering that thiol bindings have been reported to i...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.