Abstract

J. Perdew, M. Ernzerhof, A. Zupan, and K. Burke, Why Density-Gradient Corrections Improve Atomization Energies and Barrier Heights. S. Ivanov and M. Levy, Second-Order Relations Involving Correlation Energy and Its Functional Derivative. T. Kreibich, S. Kurth, T. Grabo, and E.K.U. Gross, Asymptotic Properties of the Optimized Effective Potential. E.V. Ludena, R. Lopez-Boada, V. Karasiev, R. Pino, and E. Valderrama, Recent Developments in the Local-Scaling Transformation Version of Density Functional Theory. R.K. Nesbet, In Search of the Correlation Potential. A. Gonis, T.C. Schulthess, P.E.A. Turchi, and J. Van Ek, The n-Particle Picture and the Calculation of the Electronic Structure of Atoms, Molecules, and Solids. H. Chermette, A. Lembarki, H. Razafinjanahary, and F. Rogemond, Gradient-Corrected Exchange Functional with the Correct Asymptotic Behavior. J.K. Percus, Auxiliary Field Representation of Fermion Kinetic Density Functional. L. Kleinman and D.M. Bylander, Using the Exact Kohn-Sham Exchange Energy Density Functional and Potential to Study Errors Introduced by Approximate Correlation Functionals. B.I. Dunlap and R.W. Warren, Quantum Chemical Molecular Dynamics. M. Nekovee, W.M.C. Foulkes, A.J. Williamson, G. Rajagopal, and R.J. Needs, A Quantum Monte Carlo Approach to the Adiabatic Connection Method. R.N. Schmid, E. Engel, R.M. Dreizler, P. Blaha, and K. Schwarz, Full Potential Linearized-Augmented-Plane-Wave Calculations for 5d Transition Metal Using the Relativistic Generalized Gradient Approximation. X. Gonze, Interatomic Force Constants in Periodic Solids from Density Functional Perturbation Theory. V. Sahni and A. Solomatin, Recent Developments in the Electronic Structure of Metal Surfaces. T. Mineva, N. Neshev, N. Russo, E. Sicilia, and M. Toscano, Density Functional Orbital Reactivity Indices: Fundamentals and Applications. P. Politzer and P. Lane, Density Functional Calculation of Reaction Energetics: Application to Alkyl Azide Decomposition. P. Geerlings, F. De Proft, and W. Langenaeker, Density Functional Theory: A Source of Chemical Concepts and a Cost-Effective Methodology for Their Calculation. L.M. Molina, M.J. Lopez, A. Rubio, and J.A. Alonso, Pure and Mixed Pb Clusters of Interest for Liquid Ionic Alloys. E. Broclawik, Density Functional Theory in Catalysis: Activation and Reactivity of a Hydrocarbon Molecule on a Metallic Active Site. F.C. Sanders, Recent Developments in High-Precision Computational Methods for Simple Atomic and Molecular Systems. Subject Index.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call