Abstract
In this work, we perform density functional theory studies to comprehend the structure and energetics of the interaction of γ-Fe2O3 nanoparticles with Flutamide (FLU) anticancer drug. Quantum mechanics calculations by two methods including B3LYP/6-31G** and M06-2X/6-31G** have been used to obtain the details of energetic, geometric, and electronic features of the drug molecule interacting with the surface of the maghemite nanoparticles in water solution. The obtained calculations of M06-2X/6-31G** method approved the observation of the strongest adsorption within the hydrogen bond interactions between two considered molecules are predominate, while the adsorption process of drug on the nanoparticles in B3LYP/6-31G** method is endothermic and hence, the adsorbed structures are unstable. The quantum theory of atoms in molecules analysis illustrates closed shell interactions between the drug molecule and the γ-Fe2O3 nanoparticles. The natural bond orbital analysis demonstrated that the drug molecule has the ability to be adsorbed on the nanoparticle surface with the transfer of charge from the drug molecule to maghemite nanoparticles. Moreover, quantum mechanical descriptors within the drug-nanoparticles systems were investigated and it was implied that binding of FLU molecule with γ-Fe2O3 nanoparticles is thermodynamically favorable. Therefore, γ-Fe2O3 nanoparticles can be introduced as efficient systems for the delivery of the drug molecule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.