Abstract

PBEPBE‐D3 calculations were performed to investigate how platinum (Pt) interacts with the internal and external surfaces of single‐walled pristine, Si‐, Ge‐, and Sn‐doped (6,6) carbon nanotubes (CNTs). Our calculations showed that atomic Pt demonstrates stronger binding strength on the external surfaces than the internal surface adsorption for the same type of nanotube. In cases of external surface adsorptions, Si‐, Ge‐, and Sn‐doped CNTs show comparable binding energies for Pt, at least 1.40 eV larger than pristine CNT. This enhancement can be rationalized by the strong covalent interactions between Pt and XC (X = Si, Ge, and Sn) pairs based on structural and projected density of states analysis. In terms of internal surface adsorptions, Ge and Sn doping could significantly enhance the binding of Pt. Pt atom shows much more delocalized and bonding states inside Ge‐ and Sn‐doped CNTs, indicating multiple‐site interaction pattern when atomic Pt is confined inside the nanotubes. However, the internal surface of Si‐doped CNT presents limited enhancement in Pt adsorption with respect to that of pristine CNT because of their similar binding geometries. © 2016 Wiley Periodicals, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.