Abstract

The catalysts for oxygen reduction reaction (ORR) are of great significance to the development of electrochemical energy systems. In this paper, the ORR catalytic performance of Mn–Ni dual-metal doped N-coordinated graphene is studied by density functional theory (DFT). The results show that the catalysts with dual-metal active sites are more stable than that with single metal site, and all catalysts show certain catalytic activity. The reaction pathway analyses of catalysts with two different adsorption configurations of O2 show that when O2 is adsorbed on two metal sites, OOH will automatically split into OH and O. When O2 is adsorbed on Mn site alone, the other site does not participate in the adsorption of oxygen-containing intermediates. The thermodynamic calculation results show that the catalytic performance is mainly influenced by the adsorption strength of O, which is controlled by the number of active sites involved in the adsorption, bond length and the number of transferred electrons at the active sites. The G-MnNiN6-3 shows the best catalytic performance with an overpotential of 0.453 V and a reaction energy barrier of 0.19 eV. The results of this study highlight the potential application of Mn–Ni dual-metal doped N-coordinated graphene as a highly efficient non-precious catalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.